

A Big thanks to ...

The Almighty – I bow down to your gentle feet. Nothing can be achieved without your ultimate blessing.

My Parents & Elder brother - Whose continuous support & efforts made this book possible.

My Teachers and guides – The one who enlightens the path and make us capable of walking on that path.

Team Krivi – Everyone for your relentless efforts.

And yes.... TO YOU ALL STUDENTS – For showering us with your love, faith and support.

Every effort has been taken to avoid any error or omission in this book. However, if you still find any error or omission then please share it at any of the following-

Whatsapp or Telegram us at 94784-23144. or Email us at <u>hello.krivii@gmail.com</u>

The author or the publisher shall not be responsible for any kind of damage or loss due to error or omission.

Index

Fin	Fundas	Index

	STORY / CHAPTER NAME	IDEAL SEQUENCE TO STUDY
1.	Basics of Stock Market	Before Starting AFM
2.	Time Value of Money	Before Starting AFM
3.	How much for a water bottle?	Before Starting AFM
4.	Ratios	Student's choice
5.	Kido's Gift – Concept of Return	Before Bonds (Fixed Income)
6.	Credit Ratings	Before Bonds (Fixed Income)
7.	Data Analysis	Before Portfolio Management
8.	Futures	Before starting Futures
-	I love You Betting	
-	Genvine case of a Wheat Farmer	
-	Airlines are worried	
_	Smart Boy can profit from Apples	
9.	Diwali Lottery	Before Starting Options
10.	Friends with Normal Distribution	Before Starting Risk Management (VaR)
	Must join us on Telegram for regu	plar updates regarding this book
	Such as additions,	corrections etc.
	Search 'Krivii Eduspace' on	Telegram and join us now.
	Did you like our efforts t	o make AFM Simple?
	Share it with your friends \$ other CA stude	ents and make their journey simplier. 🐵
	Please rate ou	or efforts —
	Visit www.krivii.i	n to rate us or
	directly share your feedback with us at t	9478423144 (WhatsApp/Telegram)

	Contact vs –	
	WhatsApp / Telegram - 9478423144	
	Mail – <u>hello.krivii@gmail.com</u>	
	Website – <u>www.krivii.in</u>	
	Telegram Channel: Krivii Eduspace – Jatin Nag	pal (CA, FRM)
	YouTube - Krivii Eduspace	
	DEM Soviour Rotch	
	Optional Ques	Conceptual Coverage in 65 hours (+ 25 Hr Solving)
	← 🍪 SSFM Maniramya ᢏ : 🕀	H • 42 min ago Revising portfolio management in 5hrs including every minute detail/basic se bbi basic detail) is
	The Saviour batch is a blessing for those students who took SFM classes two years back .The conceptual clarity in this batch is more compared to any regular classes of other faculty. I wish your classes should get better reach in the coming few days.	really an art sir You have mastered it sir I can confidently say i dont have to mug up any formula now onwards
	20:30 Thank you so much. 🙏 20:34 📈	Thank you so much sir And guys if you are in doubt whether to trust
		these young dynamic Faculty or to go for the so called legends
8	Anil Gupta • 22 hr ago Why don't seniors refer teacher like you, taken classes someone, all the things were rutta even they were rank 1, just watched theire classes nd	Thave spent 20k for SFM alone and trust me they taught only what sir has taught in the lecture nothing more nothing less and their books were neither updated upto date nor were as per ICAI standards
	had to made own concepts, alot of time	But sir's books are also simplified and has everything covered with wide variety of qstns and
	consumed, even ears were fed up of listening, nd watching.	he has provided them for free dev manush hain si So you can happily trust Jatin sir
	Now watched two chapters , both were full of enjoyment and learning nd now going to watch	Thank you once again sir
	next part.	
	next part. – Tq , uh made mah day 💙	

Basics	of Stock Market 1.1 WWW.KRIVIEDUSPACE.COM
	PART A: Your First
1.	Let's buy some vegetables
I)	WHEN YOU GO TO A VEGETABLE MARKET
-	There are large number of different vegetables
-	There are many buyers & sellers. The buyers & sellers negotiate to arrive at a price.
-	The buyer will aim for maximum bargain and the seller aims for a higher price.
-	The price where the transaction takes place is the price at which both the buyer & seller agrees to transact
-	This price is determined by factors of demand & supply.
II)	HOW THE PROCESS MOVES
Step 1:	Buyer decides what he wants to buy, say he wants to purchase potatoes.
Step 2:	Buyer will find a person who is selling potatoes. The potato seller ASKS for a price of ₹60/kg.
Step 3:	Negotiate. Now here can be multiple possibilities.
	(i) Buyer will agree to the price of ₹60/kg.
	(ii) Buyer may try to bargain and BID at Rs. 50/kg.
	(iii) The seller & buyer may both compromise to some extent & agree to a price of ₹55/kg.
2.	When you go to stock market
-	You can buy or sell the shares of various companies.
-	Just like in a vegetable market, the price of shares are determined largely by demand & supply factors.
-	There are a lot of other factors as well & that's what we will study in this subject.

II)	HOW THE PROCESS MOVES
Step 1:	Buyer will decide which share he wants to buy, say he wants to buy the shares of Tata Motors.
Step 2:	Buyer will check what price the sellers are asking for Tata Motors. Say the seller of Tata Motors' shares
	ASKS for a price of ₹200/share.
Step 3:	Again (like vegetable market) the buyer has 3 choices -
	(i) Agree to the price of ₹200/share.
	(ii) Try to bargain & BID at a price of Rs. 190/share.
	(iii) The seller & buyer may both compromise to some extent & agree to a price of ₹194/share.
3.	Learnings from the above story
1.	The price which seller asks is known as ASK RATE or OFFER RATE .
2.	The price at which buyer offers to purchase the share is known as BID RATE .
3.	Share price which you see on TV or stock exchange is LAST TRADED PRICE (LTP) . This is the price
	at which the last trade has happened. LTP is discovered using the market mechanisms of bid-ask only.
4.	The difference between the Ask price (₹200) & bid price (₹190) is known as BID-ASK SPREAD (₹10).

4. Practical Example

		ampre	<u>*</u>			
TCS				0.11% ^	2130.70	The Bid-ask table of TCS share.
BID	ORDERS	QTY.	OFFER	ORDERS	QTY.	Here the buyer with the highest bid is placed on the top on the Bid side of the
2130.50	1	28	2131.00	7	126	table and the seller with the lowest ask
2130.45	6	60	2131.10	1	15	price is placed on the top of the ask side c
2130.40	2	115	2131.35	2	82	the table.
2130.30	1	9	2131.60	2	16	For a trade to happen either the huver w
2130.25	1	1	2131.65	1	40	have to increase his bid or the seller she
Total		2,06,308	Total	2	2,25,573	reduce his ask price.

Basics of Stock Market

0.				
		INVESTOR		TRADER
-	Investment horizon	Long term- 1 ye	ear, 2 years, 5 years	Short term- 1 day to 1 week (genera
-	Focus on	Fundamental an	alysis (company's future	Technical analysis (studying charts an
		earnings, its cor	npetitiveness etc.) — We	patterns to enter into short term
		will study a lot	about it later.	trade) (Can refer CMT for this)
-	Contract type	Enter into delive	ery contracts	Traders do a lot of Intraday trading
	Author note - Stud	lents interested in	· 'Investing' can refer CF/	A for in-depth knowledge.
	Those interested in T	echnical analysis co	an check out 'CMT' (Charte	ered Market Technician) by CMT Associat
II)	THE ULTIMATE GOA	L		
	Ultimate goal of eve	ryone dealing in s [.]	tock market (investor & ti	rader) -> BUY LOW & SELL HIGH
6	2 types of Fa	uity Contra	<u>cts</u>	
6.	2 types of Eq	uity Contra	Cts	(ii) Delivery (unlimited period)
6.	2 types of Eq There are 2 types of	uity Contra contracts - (i)	<mark>Cts</mark> Intraday (same day)	(ii) Delivery (unlimited period)
6. 1)	2 types of Eq There are 2 types of	uity Contra contracts - (i)	Cts Intraday (same day) trades you have & sell the	(ii) Delivery (unlimited period)
6. I)	2 types of Eq There are 2 types of INTRADAY CONTRAC	uity Contra contracts - (i) CTS - In intraday	Cts Intraday (same day) trades you buy & sell the	(ii) Delivery (unlimited period) shares on the very same day.
6. I) Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC	uity Contra contracts - (i) CTS - In intraday Dro	Cts Intraday (same day) trades you buy & sell the	(ii) Delivery (unlimited period) shares on the very same day.
6 . I) Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000	uity Contra contracts - (i) CTS - In intraday DrO shares × 240	cts Intraday (same day) trades you buy & sell the = 2,40,000	(ii) Delivery (unlimited period) shares on the very same day.
6. 1) Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000 Then sell: 1,000	uity Contra contracts - (i) CTS - In intraday pro shares × 240 shares × 243	Cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000	(ii) Delivery (unlimited period) shares on the very same day.
6 . I) Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000 Then sell: 1,000	uity Contra contracts - (i) CTS - In intraday oro shares × 240 shares × 243 Gross profit	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000	(ii) Delivery (unlimited period) shares on the very same day.
6. I) Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000 Then sell: 1,000	uity Contra contracts - (i) CTS - In intraday pro shares × 240 shares × 243 Gross profit	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000	(ii) Delivery (unlimited period) shares on the very same day.
6. 1) Ex: Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000 Then sell: 1,000 Intraday sell say Volt First sell: 2000	uity Contra contracts - (i) CTS - In intraday oro shares × 240 shares × 243 Gross profit	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000 = 14,00,000	(ii) Delivery (unlimited period) shares on the very same day.
6. 1) Ex: Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000 Then sell: 1,000 Intraday sell say Volt First sell: 2000 Then buy: 2000	uity Contra contracts - (i) CTS - In intraday oro shares × 240 shares × 243 Gross profit cas shares × 700 shares × 694	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000 = 14,00,000 = 13,88,000	(ii) Delivery (unlimited period) shares on the very same day.
6. 1) Ex: Ex:	2 types of Eq There are 2 types of INTRADAY CONTRACT Intraday buy say Wip First buy: 1,000 Then sell: 1,000 Intraday sell say Volt First sell: 2000 a Then buy: 2000 a	uity Contra contracts - (i) CTS - In intraday oro shares × 240 shares × 243 Gross profit cas shares × 700 shares × 694 Gross profit	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000 = 14,00,000 = 13,88,000 = 12,000	(ii) Delivery (unlimited period) shares on the very same day.
6. 1) Ex: Ex:	2 types of Eq There are 2 types of INTRADAY CONTRACT Intraday buy say Wip First buy: 1,000 Then sell: 1,000 Intraday sell say Volt First sell: 2000 Then buy: 2000	uity Contra contracts - (i) CTS - In intraday oro shares × 240 shares × 243 Gross profit cas shares × 700 shares × 694 Gross profit I & then buy in co	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000 = 14,00,000 = 13,88,000 = 12,000 ase of intraday contracts.	(ii) Delivery (unlimited period) shares on the very same day.
6. 1) Ex: Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000 Then sell: 1,000 Then sell: 1,000 Then buy: 2000 Then buy: 2000	uity Contra contracts - (i) CTS - In intraday oro shares × 240 shares × 243 Gross profit cas shares × 700 shares × 694 Gross profit I & then buy in co	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000 = 14,00,000 = 13,88,000 = 12,000 ase of intraday contracts.	(ii) Delivery (unlimited period) shares on the very same day.
6. 1) Ex: Ex: Ex:	2 types of Eq There are 2 types of INTRADAY CONTRAC Intraday buy say Wip First buy: 1,000 Then sell: 1,000 Then sell: 1,000 Then buy: 2000 Then buy: 2000 Yes, you can first sel	uity Contra contracts - (i) CTS - In intraday oro shares × 240 shares × 243 Gross profit cas shares × 700 shares × 694 Gross profit I & then buy in co elling is allowe	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000 = 14,00,000 = 12,000 ase of intraday contracts. d only in intraday trade	(ii) Delivery (unlimited period) shares on the very same day.
6. I) Ex: Ex: np:	2 types of Eq There are 2 types of INTRADAY CONTRAG Intraday buy say Wip First buy: 1,000 Then sell: 1,000 Then sell: 2000 Then buy: 2000 Yes, you can first sel In India - Short s	uity Contra contracts - (i) CTS - In intraday OrO shares × 240 shares × 243 Gross profit cas shares × 700 shares × 694 Gross profit I & then buy in co elling is allowe	cts Intraday (same day) trades you buy & sell the = 2,40,000 = 2,43,000 = 3,000 = 14,00,000 = 13,88,000 = 12,000 ase of intraday contracts. d only in intraday trade	(ii) Delivery (unlimited period) shares on the very same day.

7.	Basic terminology
I)	LONG POSITION
	Long position means buying. It is represented by '+' sign.
	Ex: Infosys 1000+ means = I have bought 1000 shares of Infosys. Or I am long on Infosys.
II)	SHORT POSITION
	Short position means Selling. It is represented by '-' sign.
	Ex: Wipro 500- means = I have sold 500 shares of Wipro. Or I am short on Wipro.
III)	BULL & BEAR MARKET
	BULL MARKET — When the market is rising. (upward trend)
	BEAR MARKET — When the market is falling. (downward trend)
IV)	MARKET CAPITAL OR MARKET VALUE
	Market Cap = Number of outstanding shares Market × price per share
	Market capitalization or Market value tells us about the size of the company.

PART B: The Indices

1.	Introduction to Index
	INDEX MEANS INDICATOR
-	Index gives us a GENERAL IDEA whether most of the stocks have gone up or down.
Ex:	CONSUMER PRICE INDEX (CPI) tells whether the price of SELECTED goods in economy has increased or
	decreased.
	Milk Vegetables Basket of Goods/ Services # Only Essential goods / Serivices Petrol / Oil Medical Care Not all the goods/Services
-	Similarly, there are stock index such as SENSEX or NIFTY.
-	These indices measure the change in price of selected group of companies
-	It gives us an overall idea whether the OVERALL MARKET has increased or decreased.
II)	SENSEX
	Sensex = SEN sitivity Ind EX . It comprises 30 of the largest and most actively-traded stocks on the B
III)	NIFTY
	NIFTY - NSE Fifty. This is also an index like Sensex. However, there are 50 companies in Nifty.
IV)	WHY DO WE EVEN NEED AN INDEX?
-	There are more than 6000 companies listed on BSE & 1600+ companies on NSE.
-	Investors are not really concerned in all the companies listed on BSE/NSE. Therefore, including those
	companies in the index will not be meaningful.
V)	SOME OTHER INDICES
	INDIAN Nifty IT Nifty Midcap 100 Nifty Bank Bankey etc
	THET IN - IN BY TH, IN BY HIGHER 100, IN BY BUIK, BUIKON COO.

	Get Set Go
	PARI C: Real Trading!
	In this part, we will learn to operate a Demat account.
	It is highly recommended that students should open a Demat account. (It is very simple)
	This part will be practically understood in the class.
I)	BASIC TERMS
	Pay In — To put money in Demat account.
	Pay Out — To withdraw money from your demat account.
	(Note: Pay In & out is only possible from the linked bank account and not any other account.)
	Market Order — Order will be placed at CMP.
	Limit Order — Urder will be placed at a pre-determined price. (Note: Limit Orders are used to negotiate
	price in stock market as discussed earlier)
	Stoploss order — An order to sell a security at a specified price in order to limit loss. Example: Setting a
	SL order at 5% will limit the losses to 5%.
	Market Timings — 9:15 am — 3:30 pm (Pre-open at 9:00 am)
II)	SQUARING OFF
	It means exiting a position. When you buy a stock, you will have to sell it to exit from your position.
	Similarly, when you 1 st sell a stock (in case of Intraday short selling), you will have to Buy the stock to
	to exit from your short position. This exiting from a position is known as Squaring off.

TVM	2.1 WWW.KRIVIEDUSPACE.COM
1.	Two basic conditions of Money
	We can Add, subtract etc. different amounts only if -
	The amounts are in same currency
	The amounts are standing at same point of time
Ex:	You have ₹1000 and \$10 with you. What is your total worth?
	Can you say I have 1010 something something NO!
A:	First convert \$ to ₹ (or ₹ to \$). If 1\$ = ₹80, then -
	Total wealth = 1000 + 80×10 = ₹1800.
Ex:	You have ₹1000 today and you'll receive ₹550 after 1 year.
	Is you wealth today ₹1550? NO!
A:	First find PV of ₹550. If discount rate = 10%, then PV = $550/1.10^1 = ₹500$.
	Total wealth = 1000 + 500 = ₹1500.
2.	Calculating FV & PV – Compound Interest
I)	FUTURE VALUE (FV)
	$FV = PV \times (1+r)^n$
	Where: r = Rate per period
	n = number of compounding periods
Ex:	You invested ₹100 today at 10% p.a. Find future value (FV) after 1-year and 2-year.
A:	FV after 1-year = 100 × (1 + 0.1) ¹ = ₹110.
	FV after 2-years = 100 × (1 + 0.1) ² = ₹121.
	$\frac{P(r)}{P(r)} = \frac{F(r)}{r}$
	Note - 1/(1+r)" is also known as fV factor.
Ex:	Find PV if interest rate is 10%. Case 1 — Amount after 1 year = ₹110.
	Case 2 — Amount after 2 years = ₹121
A:	Case 1 - PV = 110 / 1.10 ¹ = ₹100
	Case 2 — PV = 121 / 1.10 ² = ₹100

	PV of multiple cash flows
1)	MULTIPLE UNEQUAL CASH FLOWS
.,	This is like calculating PV of single cash flows. Calculate PV of each cash flow & add them to get Total F
Ex:	Time (in years) - 1 2 3 4
	Cash flow - 130 150 290 400
A:	$\frac{PV = 130}{(1.08)^1} + \frac{150}{(1.08)^2} + \frac{290}{(1.08)^3} + \frac{400}{(1.08)^4}$
	PV = 120.37 + 128.60 + 230.21 + 294.01 = ₹773.19
	MULTIPLE EQUAL CASH FLOWS
117	PV = Cosh flow per period x PVAF(r %, n periods)
	Where PVAF = Present value annuity factor
Ex:	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a.
Ex: A:	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5)
Ex: A:	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27
Ex: A:	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27
Ex: A: 4 .	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows
Ex: A: 4.	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW
Ех: А: 4 .	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.)
Ex: A: 4.	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.)
Ex: A: 4.	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 x PVAF (8%, 5) PV = 100 x 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.) PV of perpetual cash flows = Cash flow p.a.
Ex: A: 4.	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.) PV of perpetual cash flows = Cash flow p.a. Discount rate
Ex: A: 4. I)	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 x PVAF (8%, 5) PV = 100 x 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.) PV of perpetual cash flows = Cash flow p.a. Discount rate You found an ancient tree will live for next thousands of years (perpetuity). You can sell the herbs from
Ex: A: 4. I)	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.) PV of perpetual cash flow p.a. Discount rate You found an ancient tree will live for next thousands of years (perpetuity). You can sell the herbs fro this tree and can earn revenue. Find the value of this tree today (or PV of cash flows from this tree)
Ex: A: 4. I) Ex:	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.) PV of perpetual cash flows = Cash flow p.a. Discount rate You found an ancient tree will live for next thousands of years (perpetuity). You can sell the herbs from this tree) You spect to that revenue. Find the value of this tree today (or PV of cash flows from this tree) you expect to that revenue from sale of herbs will be ₹2,50,000 p.a. Discount rate = 8%.
Ex: A: 4. 1) Ex: A:	Cash flow of ₹100 p.a. will be received for next 5 years. Find its PV today. Discount rate = 8% p.a. PV = 100 × PVAF (8%, 5) PV = 100 × 3.9927 = ₹399.27 PV of Perpetual cash flows PERPETUAL EQUAL CASH FLOW (also known as Infinite / indefinite / forever cash flows.) PV of perpetual cash flows = Cash flow p.a. Discount rate You found an ancient tree will live for next thousands of years (perpetuity). You can sell the herbs from this tree) you expect to that revenue. Find the value of this tree today (or PV of cash flows from this tree) you expect to that revenue from sale of herbs will be ₹2,50,000 p.a. Discount rate = 8%. PV of cash flows = Cash flow p.a. PV of cash flows = Cash flow p.a.

TVM

TVM

I)	SPECIAL CATCH
	Let us say that the ancient tree (from above example) will start producing herbs only after 4 years.
	What should be the PV of its cash flows now?
A:	PV = <u>Cash flow p.a.</u> x <u>1</u>
	Discount rate $(1 + r)^3$
	PV = <u>2,50,000</u> × <u>1</u> = ₹24,80,725
	0.08 1.083
	Logic of above
	Perpetuity formula pulls the total value of perpetual CFs to 1 yr before the starting yea
-	If perpetual CFs are starting from year 1, then this formula will provide us value @ Year 0.
-	Similarly, if perpetual CFs are starting from year 4, then this formula will provide us value @ Year 3.
	So, to calculate its PV we have to discount it with $(1 + r)^3$.
III)	PV OF PERPETUAL & GROWING CASH FLOWS
,	PV of Perpetual & Growing (Es = 1 st (E of arowth series
	Discount Rate _ Growth rate
Ex:	Let us say in the previous example of ancient tree, you expect annual cash flows to grow at 3% p.a.
	Find PV of cash flows now.
A:	PV of cash flows = = ₹50,00,000.
	0.08 - 0.03
	Same as above example. But herbs will grow after 5 years. So, revenue will start after 5 years.
EX:	
Ex: A:	PV of cash flows = <u>2,50,000</u> × <u>1</u> = ₹36,75,150.
Ex: A:	PV of cash flows = $2,50,000 \times 1 = ₹36,75,150.$ 0.08 - 0.03 1.08^{4}
Ex: A:	PV of cash flows = 2,50,000 × 1_ = ₹36,75,150. 0.08 - 0.03 1.084

Finance Achary	a Jatin	Nagpal	(CA	FRM)
1 manoe i toradi ya	LOUGH	Jugpuc		

Finance	Acharya Jatin Nagpal (CA, FRM)	2.4	TVM	
I)	SPECIAL CASE 1 Period < 1 year			
Ex:	Interest rate for 3-months = 2%. It will be quoted as 2 × 4 = 8% p.a.			
	So, if ques mention 8% p.a. and you require quarterly	interest → Then it means 8 × 3/12 = 2%	, per quarter.	
Ex:	Invested ₹1000 for 6-months @ 8% p.a. Find future	value @ end of 6-months.		
A:	Future value = 1000 × (1 + 0.08 × 6/12) = ₹1040.			
Ex:	You will receive ₹1040 after 6 months. Find its PV if	interest rate = 8% p.a.		
A:	PV = <u>1040</u> = ₹1000.			
	$(1 + 0.08 \times 6/12)$			
II)	SPECIAL CASE 2 Compounding frequency spec	fically given		
	Concept — The formula for PV and FV remains same	with 2 additional steps.		
Step 1:	Get rate per compounding period (r) = Rate p.a. ÷ N	imber of compounding in a year		
Step 2:	Calculate number of compounding periods (n) = Num	ber of years x Number of compounding	in year	
Ex:	Amount invested today ₹1000 for 1.5 years at 10%	o.a. compounded semi-annually. Find FV.		
A:	r = Rate per compounding period = 10% / 2 = 5% per	6-months.		
	n = Total number of compounding periods = 1.5 × 2	= 3		
	FV = 1000 × (1 + 0.05) ³ = ₹1157.625			
Ex:	Amount receivable after 2 years = ₹20,000. Rate = 12	% p.a. compounded quarterly. Find PV.		
A:	r = Rate per compounding period = 12% / 4 = 3% per	quarter.		
	n = Total number of compounding periods = 2 × 4 =	8		
	PV = 20,000 / (1 + 0.03) ⁸ = ₹15,788.18			
)	CRUX (V.Imp)			
	PERIOD < 1 YEAR	PERIOD > 1 YEAR		
-	FV = PV (1 + r × months/12)	$FV = PV (1 + r)^n$		
-	PV = <u>FV</u>	PV = <u>FV</u>		
	(1 + r*months/12)	(1 + r) ⁿ		
*	In case if period is in days, then it will be	Where r = rate per compounding pe	riod	
	days / 360 or 365 and so on	n = Total number of compou	nding periods	

TVM

6.	Dirty power				
Ex:	Amount invested today = ₹1000. Rate = 12% p.a. compounded semi-annually. Find FV after 15 months.				
A:	r = Rate per compounding period = 12% / 2 = 6% per 6-months.				
	n = Total number of compounding periods = 15/6 = 2.5 periods				
	$FV = 1000 \times (1 + 0.06)^{2.5}$				
	~				
	BUT HOW SOLVE 1.0625				
	Such odd powers are also known as Dirty power.				
	STEPS TO SOLVE DIRTY POWER – A ^B				
	\sqrt{a} 12 times Enter 'a' and then press under-root button 12 times				
	-1 Subtract 1				
	×b Multiply with power				
	+ 1 Add 1				
	x = 12 times Press 'multiply equal to' 12 times				
	Applying in above case -> Calculating 1.06 ^{2.5}				
	$\sqrt{1.06}$ - 12 times				
	- 1				
	× 2.5				
	+ 1				
	x = -12 times				
	<u>We'll get $1.06^{2.5} = 1.1568$</u>				
	Hence, FV = 1000 × 1.1568 = ₹1156.8				

Finance Acharya Jatin Nagpal (CA, FRM)
--

ance	Acharya Jatin Nagpal (CA, FRM) 2.6 TVM
7.	Spot Rates (SR) vs Forward Rates (FR).
I)	SPOT RATES (ALSO KNOWN AS ZERO RATES).
Ex:	You want to invest ₹100. Banker has quoted following SPOT rates. Find the future value of investment.
	1 year SPOT RATE (r0,1) = 10% p.a.
	2 years SPOT RATE (r0,2) = 11% p.a.
	3 years SPOT RATE (r0,3) = 12% p.a.
A:	If you invest for 1 year, then future value of investment = ₹100 × 1.10 = ₹110 (easy).
ii)	Invest for 2 years.
	Earn 11% p.a. for next 2 years. i.e. Interest for 1 st year = 11% and also interest rate for 2 nd year = 11%.
	FV of investment = $100 \times 1.11 \times 1.11 = 100 \times 1.11^2 = 123.21$
iii)	Invest for 3 years.
	You will earn 12% p.a. for next 3 years.
	$FV = 100 \times 1.12 \times 1.12 \times 1.12 = 100 \times 1.12^3 = 140.49$
II)	FORWARD RATE (FR)
Ex:	You want to invest ₹100. Banker has guoted following forward rates: Find future value of investment.
	Forward Rate of year 1 (f_{01}) = 10% p.a.
	Forward Rate of year 2 $(f_{1,2}) = 11\%$ p.a.
	Forward Rate of year 3 (f _{2,3}) = 12% p.a.
A:	Year 1 is same. You invest and earn 10%. FV of investment = 100 × 1.10 = ₹110
11)	Invest for 2 years
	Earn 10% interest for 100 year (i.e. 100 year FK) and 11% for second year (i.e. 2^{10} year FK).
	$FV OF Investment = 100 \times 1.10 \times 1.11 = <122.1$
iii)	Invest for 3 years
	Earn 10% for 1 st year, 11% for 2 nd year and 12% for 3 rd year.
	FV of investment = 100 × 1.10 × 1.11 × 1.12 = ₹136.752
III)	NOTATIONS
	$r_{(0,2)}$ means SR for 2 years. Similarly, $r_{(0,3)}$ means SR for 3 years and so on.
	f(12) means FR for 2 nd uear. Similarly, f(23) means FR for 3 rd uear and so on.

How much for a water bottle?

Mr. CA forgot his water bottle while going to his office.

Shopkeeper — Here it is sir. 1 water bottle for \gtrless 40

Mr. CA - Oh it's too expensive. Let it be. I will go back home and pick up my bottle.

After a few days...

Mr. CA went to tour UAE and got lost in a dessert. After 2 days without food & water he finally found a man selling 1 water bottle for ₹10,000. He purchased it instantaneously to save his life.

Ē	Why it is co? To understand it we must first understand 2 terms. Value and Price
	WITY IL 13 30: TO WINGERStund It, WE THUST THIST WINGERStund 2 CETTES — VUINE UND THEE.
I)	VALUE
-	Amount determined by investor as the amount that he/she SHOULD PAY to get an asset.
-	This is amount that you feel is 'RIGHT OR FAIR' for the asset.
-	Also known as Fair value or Fair price or equilibrium value or theoretical value.
II)	PRICE
	Price prevailing in the market i.e. amount at which you can ACTUALLY BUY OR SELL an asset.
	In the above example, the rate quoted by shopkeeper (₹40 or ₹10,000) is the price.
III)	CRUX
	In case 1 - Value of 1 water bottle was probably less than the price (₹40) for Mr. CA. So, he didn't buy it.
	In case 2 - Value of 1 water bottle was way higher than ₹10,000 for Mr. CA (as his life was at stake).
	So, he promptly bought the bottle for even ₹10,000.

Chapter Name Finance Acharya Jatin Nagpal (CA, FRM) 3.2 IV) OVER-VALUED & UNDER-VALUED If price > Value = The asset is overpriced & I am not willing to buy it. If price < Value = The asset is under-priced & I am eager to buy it (since I am getting discount!) V) HOW TO FIND VALUE AND PRICE? Price = Simply check what the price prevailing in the market. It cannot be calculated as such. Value = PV of expected cash inflows from an asset. From the outside, you may feel that each financial asset has a EQUITY SHARES different way of calculating its **Corporate Valuation** value. BONDS / Debentures However, you will observe that the base of every such PREF. SHARES, calculation is nothing but the **Right Shares**, Warrants present value of cash inflows. DERIVATIVES like Futures & Options COMPLEX FINANCIAL INSTRUMENTS LIKE X CDOs- Not in syllabus Roots of Valuation = **PVCI**

Let's recall some ratios	
I) PROFITABILITY RATIOS (BASE = SALES)	
1. GP ratio = GP/Sales	
2. COGS ratio = COGS / Sales or 100% - GP Ratio	
3. Operating expense = Operating expense / Sales	
4. Operating profit (OP) ratio = EBIT / Sales	
5. Operating ratio = (COGS + Operating expenses) / Sales or	100% - OP ratio
6. NP ratio = NP/Sales	
1. Asset Turnover ratio = Sales / Assets	
2. Fixed Asset Turnover ratio = sales / Fixed Assets	
5. Current Asset Turnover ratio = sales / current Assets	ent or i
5 Debtor Turnover ratio = COEST Average inventory of closing inv	
III) PER SHARE RATIOS	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs)	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT - (Preference dividend + Any tax on preference dividend)	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT - (Preference dividend + Any tax on preference dividend)	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT - (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT — (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs Total number of equity shares	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT - (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs Total number of equity shares	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT — (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs Total number of equity shares 3. Market Value per share (MPS) = Total Market value of the company	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT — (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs Total number of equity shares 3. Market Value per share (MPS) = Total Market value of the company Total number of Equity shares	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT - (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs 3. Market Value per share (MPS) = Total Market value of the company Total number of Equity shares	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs 3. Market Value per share (MPS) = Total Market value of the company Total number of Equity shares 4. Book Value per share (BVPS) = Total Equity shareholders funds	
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs Total number of equity shares 3. Market Value per share (MPS) = Total Market value of the company Total number of Equity shares 4. Book Value per share (BVPS) = Total Equity shareholders funds Total number of Equity shares	
III) PER SHARE RATIOS 1 EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs 3. Market Value per share (MPS) = Total Market value of the company Total number of Equity shares 4. Book Value per share (BVPS) = Total Equity shareholders funds Total number of Equity shares * Total number of Equity shares	the NET WORTH of the company.
III) PER SHARE RATIOS 1. EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares * EAESHS= PAT — (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs Total number of equity shares 3. Market Value per share (MPS) = Total Market value of the company Total number of Equity shares 4. Book Value per share (BVPS) = Total Equity shareholders funds Total number of Equity shares * Total ESHs funds = Paid up SC + Reserve & Surplus. This is also known as + 5. Retained earnings per share (REPS) = EPS – DPS	the NET WORTH of the company.
 III) PER SHARE RATIOS EPS = Earnings available for Equity shareholders (EAESHs) Total Number of Equity Shares EAESHS= PAT - (Preference dividend + Any tax on preference dividend) 2. Dividend per share (DPS) = Total dividend paid for ESHs Total number of equity shares 3. Market Value per share (MPS) = Total Market value of the company Total number of Equity shares 4. Book Value per share (BVPS) = Total Equity shareholders funds Total ESHs funds = Paid up SC + Reserve & Surplus. This is also known as for the company share (REPS) = EPS - DPS Dividend payout ratio (DPR) = DPS / EPS or 100% - Retenti 	the NET WORTH of the company.

Finance	Acharya Jatin Nagpal (CA, FRM) 4.2 Ratios
IV)	EARNING OR RETURN BASED RATIOS
1.	Dividend rate = <u>Dividend per share (DPS)</u> × 100
	Face value per share
*	Dividend rate is always calculated w.r.t to the FACE VALUE of the share & not the MPS.
2.	Dividend yield = <u>DPS</u> × 100
	MPS
*	The MPS that needs to be considered is the price at which the investment was made. Therefore, if PO & PI
	are separately given in ques, always prefer PO.
8.	Earning yield = EPS × 100
	MPS
9.	Return on Equity (ROE) = Earning available for equity shareholders (EAESHs) = EPS
	Total ESHs funds (i.e. Paid up SC + R&S) BVPS
10.	Return on capital employed (ROCE) =EBIT
	Capital Employed
V)	RATIOS RELATED TO MARKET PRICE OF SHARE (MPS)
1.	PE Ratio = MPS/EPS
2.	Market capitalization (or M-Cap) = MPS x Number of equity shares
VI)	RATIOS RELATED TO CAPITAL STRUCTURE
1.	Capital employed (CE) = Equity SC + Reserve & Surplus + Preference share capital + Debt
	or CE (from asset side) = Total assets (Fixed + Current) – Current liabilities
	(Subtract any preliminary expenses or P&L debit balance or any such fictious assets)
2.	Debt equity ratio = Debt / Equity
3.	Debt ratio or Debt to CE ratio = Debt / CE or 1 - Equity ratio
4.	Equity ratio or Equity to CE ratio = Equity / CE or 1 — Debt ratio
5.	Capital gearing ratio = Debt + Preference share capital / ESH's Funds
*	ESH's funds (Equity shareholder funds) = ESC + R&S
6.	Asset to sales ratio = Assets / Sales

Ratios		4.3	WWW.KRIVIEDUSPACE.COM
7.	Interest coverage ratio = EBITDA /	' Interest	
8.	Fixed interest & fixed dividend cove	erage ratio = Net profit	+ Interest
		Interest + Pre	ference dividend
VII)	EQUIT MULTIPLIEK (IGHI FAVO		
	Financial leverage = Equity multiplier	= 10tal assets = tquity +	$\frac{\text{Debt}}{\text{C}} = 1 + \frac{\text{Debt}}{\text{C}}$
	\	Equity SC Equity	j sc Equity
	DUPONT ANALYSIS		
	ROE = Total asset turnover x l	Net profit margin x Equit	y Multiplier (or Financial leverage)
Logic:	ROE = <u>Sales</u> × <u>Net profit</u>	x <u>Total assets</u> =	<u>Net profit</u>
	Total assets Sales	Equity SC	Equity SC

Understanding Return

Unders	tanding Return	5	5.1	WWW.KRIVIEDUSPACE.COM
1.	Understanding Re	equired retur	<mark>'n</mark>	
	TWO COMPONENTS OF REC	QUIRED RETURN		
	There are different method	s to calculate the r	equired return from	a financial asset.
	Base of all these methods r	emains same. The re	quired return is ma	de up of two basic components -
	a) Risk Free return b) F	Risk premiums		
	Risk-Free Return			Risk Premium
	RISK-FREE RETURN = The	return that an inve	stor will earn if he i	nvests in an absolute risk-free
	investment. Conventionally,	the return offered	by Govt. securities	(Govt. bonds) is treated as Rf.
	RISK PREMIUM = Risk premi	iums are demanded	for the risks that a	n investor assumes in a financial asset.
	Ex: Default risk premium.			
2.	Breaking down R	<mark>f into Real R</mark> i	f & Nominal	Rf
Ex:	I invest ₹100 today in a Gov	vt. bond that will pa	ny me ₹105 after or	e year. Inflation in India = 3%.
	The total return earned by	me = 5 <mark>%</mark> .		
	Inflation in India = 3%. So, c	out of ₹5 earned, ₹	3 is merely a compe	ensation towards inflation.
	So, real earning = ₹5 — ₹3 =	₹2 only.		
	As seen in the above examp	ole, the risk-free rat	e (Rf) can be broken	down into two components
I)	METHOD 1 - Simple Additio	on Method		
	Real Rf + Inflation rate = No	minal Rf		
E× 1:	The real rf in India is 4%. Ca	Iculate Nominal Rf i	f inflation rate in Ir	ndia is expected to be 5%.
Ans:	Nominal Rf = Real Rf + Inflat	ion rate		
	Nominal Rf = 4% + 5% = 9%			

Finance	Acharya Jatin Nagpal (CA, FRM) 5.2 Understanding Return
II)	METHOD 2 - Multiplication Method (more accurate)
	(1 + real Rf) × (1 + inflation rate) = (1 + Nominal Rf)
Ex 2:	The real rf in India is 4%. Calculate Nominal Rf if inflation rate in India is expected to be 5%.
Ans:	$(1 + Nominal Rf) = (1 + 0.04) \times (1 + 0.05)$
	$(1 + Nominal Rf) = 1.04 \times 1.05 = 1.092$
	Nominal Rf = 0.092 or 9.2%
3.	Which is better?
	Story of Kido's Gift
	Kido's Mom gifted her ₹1000 to purchase a special Pen that she wanted. On the gift shop she saw a beautiful keyring for ₹20. Now she wants both.
	Kido knows that Govt. bonds are currently providing a REAL-RISK FREE RETURN of 2% p.a.
	So, she can invest in Govt. bonds and have ₹1020 after 1 year. Hurray
	she goes to the Govt. bonds seller and demands a 2% return.
Q	Do you think Kido will be able to achieve his target if inflation in economy is 5%?
A:	Total investment value after 1 year if invested at 2% real return = ₹1000 × 1.02 = ₹1020
	Price of Notebook after 1 year = ₹1000 + 5% = ₹1050.
	Oh this won't be even sufficient to buy notebook after 1 year. (Forget keyring)
	So, practically Kido is losing in this case (instead of earning anything) due to inflation.
Q	Will Kido achieve his objective if he demands 7% return i.e. REAL RETURN + INFLATION PREMIUM ?
A:	After 1 year
	Price of Notebook = 1000 × 1.05 = ₹1050
	Price of Keyring = 20 X 1.05 = ₹21
	Total funds required = ₹1071
	Total investment value = 1000 × 1.07 = ₹1070.
	Alas!!! The investment value is still not sufficient to meet the investment objective.
	So, simple addition method FAILED to achieve the investment objective.

Understanding Return

Q	Lets try with Multiplicative method.
	Required return in this case = (1 + real Rf) (1 + inflation premium) = (1 + Nominal Rf)
	$1 + Nominal Rf = 1.02 \times 1.05$
	So, required return (Nominal Rf) = 7.1%
	Let's check if this works
	Total funds required after 1 year = ₹1071
	Investment value after 1 year = 1000 × 1.071 = ₹1071
	Hurray It works. Hence, Multiplicative method is best (most accurate).
	Author Note — Although Multiplicative method works best. But even simple addition quite a close answer
	to multiplicative method. So, at some places even simple addition is also used due to its simplicity.

redit Ratir	igs		6.1	WWW.KRIVIEDUSPACE.CO				
	DIT RATINGS! ·	<mark>- Know "H</mark>	<mark>ow risky a bonc</mark>	<mark>l is"</mark>				
For t	nis One need to analyse (a lot of factors	to assess the safety of	a bond. Such as -				
- Cash e	earning capacity of the (company	<u>~</u>					
- Existir	ng liabilities of the comp	any						
- Indus	try understanding in whi	ich the company	operates					
and a	and a host of other factors.							
PROB	LEM							
An av	erage don't have much	time and knowle	dge to do all this.					
SOLU	TION							
To so	lve this problem, we hav	e Credit Ratin	g Agencies (CRAs).					
These	agencies specialise in ass	sessing the financ	ial health of a bond issu	er and assigns a credit rating to i				
		GENERAL HIER	ARCHY OF CREDIT RATII	NGS				
AAA			Clearly, the higher the	rating is, the better the				
AA	- Investmen	t grade bonds	company is assumed to	o be.				
А	(Less risky)							
BBB			This is just like grading	system of high school where				
BB			AAA is best, AA is nex	tto it & so on.				
В								
CCC								
CC	- Speculativ	e or Junk bonds	Rating D is worst of al	. It is given to a company which				
С	(carry sub	ostantial risk)	has defaulted or is exp	ected to default very soon.				
D								
So wł	nen a rating is assigned t	o a company's b	ond issue, the retail inve	stor readily knows how safe/riski				
the b	onds are. For ex: If the	bonds are rated	AA -> they are quite saf	e. But if they are rated B -> the				
carry	some good amount of	risks.						

Data	Anal	lysis
		J

Base: Learning basics of Data Analysis (Mean, SD, Cov., Correlation)

1.	Mean (Average / Expected Value)						
l)	WHEN HISTOR	ICAL DATA IS	GIVEN				
	Mean = Sum of	Fall items ÷ N	lumber of iter	ms			
Ex:	Vikram Kohli so	ored the follo	wing scores i	n his last 4 innings.	Find his mean / average score.		
	Innings	1 2	3	4			
	Score	30 40	40	50			
A:	Average score	: = <u>30 + 40 + 4</u>	0 + 50 = 40				
		4					
)	MEAN WHEN F	PROBABILITIE	S IS GIVEN				
	Mean =∑ Xi ×	Pi or	Item1	\times Prob.1 + Item2 \times	Prob. ₂ +		
Ex:	Find Expected	value of Vikrai	m Kohli's scoi	re using following a	lata:		
	Score:	30	40	50			
	Probability:	0.25	0.5	0.25			
A:	Average score	= 30 x 0.25 +	40 × 0.5 + 50	x 0.25 = 40			
Nola	If you observe	a than you'll (find that both	a the methods are	assentially the same		
NOTE.	IF YOU OPSELV			T THE THETHOUS UP			
III)	WHY IS MEAN	ALSO CALLER	EXPECTED	VALUE?			
	Let us say tha	it average trav	vel time from	1 your home to co	aching class is 15 minutes.		
	If you leave y	our home by	7:20, then you	a can expect to rea	ach your class by 7:35 (i.e. in 15 minutes).		
Ŧ	Clearly, MEAN F	nelps us in form	ming an expe	ctation about som	e and hence is also known as expected value.		
IV)	MEAN HAS A F	PROBLEM					
	Mean does not	, provide us ar	ny info about	the deviations. For	ex: If average score of Vikram Kohli		
	is 40, then it d	oes not mean	that he will s	score exactly 40 in	his next match. His ACTUAL SCORE		
	can definitely	be different fi	rom the AVER	AGE SCORE. But this	s info is not provided by mean.		

Finance	Acharya.	Jatin	Nagpal	(CA,	FRM)
	J		51	· ,	

	J	51	, , ,	5				
2.	Standar	d Deviatio	<mark>on (σ)</mark>					
	The name its	elf says: Stando	ard deviation i.e. Standard	(Mean) se Deviation.				
	SD tells us about the Deviation from the standard (Mean) on an average basis.							
I)	THE PROBLE	M - 'AVERAG	E OF DEVIATIONS' = 0.					
Ex:	Calculate the	standard devi	ation of Vikram Kohli's sc	ore.				
	Innings	Score	Deviation fr	om Mean (i.e. Score — Mean)				
	1	30	30 — 40) = -10				
	2	40	40 — 40) = 0				
	3	40	40 — 40) = 0				
	4	50	50 — 40) = 10				
	Total	160	0					
	Average	= 160/4	= 40 = 0/4 =	0				
	Ĵ							
	Average devi	ation = 0. This	is NOT a co-incidence. This	s is true for all the cases.				
	THIS IS BE	CAUSE NE	GATIVE DEVIATION	S AND POSITIVE DEVIATIONS CANCELS				
	OUT EACH	HOTHER.						
II)	THE SOLUTION	ON – TAKF AV	FRAGE OF 'SQUARED DE	VIATIONS				
,	Take the sour	are of the dev	iation first and then take	square root of the final answer				
	Innings	Score	Deviation from Mean	Square of deviations				
	1	30	30 - 40 = -10	$= -10^2 = 100$				
	2	40	40 - 40 = 0	$= 0^2 = 0$				
	3	40	40 - 40 = 0	$= 0^2 = 0$				
	4	50	50 — 40 = 10	= 10 ² = 100				
	Total	160	0	200				
	Average	40	0	50 (this is average of squared deviations)				
	Finally take square root - $\sqrt{50} = 7.07$							
)))	SD - Formu	LA (Understar	nd. don't cram)					
,	SD = 'Averag	e Squared devi	ations' ka Square root					
	$SD = \Sigma(a)$	$-\overline{r})^2$	$\int \nabla P(v - \bar{v})$)2				
	$\frac{2}{2}$	<u>- x)</u>	$\sqrt{\sum_{i=1}^{r} (x - x)}$)				
	N A							

Data A	Inalysis		7	2.3	WWW.KRIVIEDUSPACE.COM
IV)	SD = MEAS	URE OF 'TO	TAL' RISK		
	Let us unde	rstand this v	with an example.		
.					
EX:	Following an	se the score	s scored by Kohit Verma	In the last 4 match	iona
	0.25	10	10 40 - 30	square of deviat	$900 \times 0.25 = 225$
	0.20	10	15 40 - 25	6.25	$6.25 \times 0.5 = 3125$
	0.5	120	13 23	623	625 X 0.3 - 512.5
	0.25	120	120 - 70 - 80	6700	Total - 21275
٨٠	Mean - 10 x	0.25 + 15 × (15 · 120 × 0.25 - 40		10tul - 2137.5
<u> </u>	Standard de	viation = Sau	$1.5 \neq 120 \times 0.25 = 10$	quared deviation" =	= 1/21375 = 46.23
					¥2107.0 10.20
#	Interpretat	ion			
	Though the	average scc	ore of both Vikram & Rok	nit is same (40). But	the SD of Vikram is lesser (7.07).
	Whereas SD	of Rohit is a	quite high (46.23).		
	If I have to	o choose on	e plauer out of the two	. I will prefer Vikrar	n as he is more stable plauer.
	Rohit on the	e other hand	l can be a quite risky cho	Dice.	······································
V)	CRUX				
1.	SD = 'Avera	ige Squared (deviations' ka Square roc	ot.	
2.	SD is measu	re of TOTAL	. RISK. Higher the SD, the	riskier an item is. I	Hence, in stock market, we prefer
	stocks with	lower SD (o	ther things remaining sa	me).	<u> </u>
			J		
3.	Varianc	<mark>:e (σ²)</mark>			
	Variance = S	quare of sta	andard deviation		
	or simply –	'Average So	quared deviation'.		
	Variance = <u>></u>	$E (x - \bar{x})^2$	Or $\sum P(x - \bar{x})^2$		
		N			
Ex:	SD of a sto	ck is 15%. Fir	nd its variance.		
A:	Variance = (1	15 %) ² = 22	5 % ²		
Ex:	Variance of	a stock is 40	00%². Find its SD.		
A:	SD = √Variar	nce = √400	= 20%		

ance	Acharya Jatin Nagpal (CA, FRM)	7.4		Data Analysis			
4.	Correlation						
	Correlation tells us the relation between 2 items. It always lies between -1 to +1						
	Strong	Weak V	Veak	Strong			
	-1.0 -(0.5 O	+0.5	+1.0			
	Negative C	Correlation	Positive Corre	elation			
	Army vs Terroríst Wherever army goes Terrorists are killed! Perfect -ve correl (-1) Rela plays There terrorist terrorist terrorists terrorists terrorists terrorists terrorist terrorists terrorist terrorist	tíon b/w Number of ed & Number of Ted e is no relation b/w ease in cricket math redict teddy bear s e, No correlation (c	Crícket matches dy bears sold v the 2. An his cannot be used ales! correl = 0)	Relation b/w Mother & Ch Wherever mother goes Child follows! Perfect +ve correl (+1)			
II)	CORRELATION FORMULA						
•	Correlation _(x,y) = <u>Covariance_(x,y)</u>						
	σ× σy						
	Find the correlation between X & Y, if: Co	variance _(x,y) = 3600,	σx = 150, σy = 60				
Ex:	Correlation(x,y) = <u>3600</u> = 0.4 or 40%						
Ex: A:	$Correlation_{(x,y)} = 3600 = 0.4 \text{ or } 40\%$						

Data Analysis

III)	CORRELATION INTERPRETATION							
	Correlation tells us about 2 things:							
	NATURE OF RELATION (Positive or ne	egative)						
	STRENGTH OF RELATION (ex: 1 = very	strong relation, 0 = no relation etc.)						
	Scenario	Graph	Expected correlation					
1.	Number of Cows I have & Quantity of milk I get every day.	•	Close to +1. Milk quantity is directly proportional to number of cows.					
2.	Number of seeds sown & the number of new plants.	•	Close to +1. The more seeds I sow, the more plants will grow.					
3.	Number of cars in a city Vs the air quality (cleanliness) of that city.	••••	Close to -1. More cars = More pollution = decrease in air quality.					
Ч.	Time spent on social media vs 'real' happiness		Clearly a -ve relation. But it is not perfectly -ve relation. It may be close to -0.5.					
5.	Number of marriages in a year vs Number of Gold medal won in Olympics.		Expected correlation = 0. Clearly, there isn't any relation b/w the two.					
6.	Number of new mobiles sold vs New Facebook app installs		Close to +0.5. (The dots are loosely scattered around the line.)					

7		6
	٠	υ

5.	Covariance						
	Covariance calculation is quite similar to that of variance.						
	Covariance has no range. It can range from - ∞ to + ∞ . (Unlike correlation which is always b/w -1 to 1)						
-	Hence, covariance cannot tell about the strength of relation but only the nature of relation. (+ve / -ve).						
I)	FORMULAS (similar to Variance)						
	Variance = $\sum (x - \bar{x})^2$ Or $\sum P(x - \bar{x})^2$						
	N						
	Covariance = $\sum (x - \overline{x})(y - \overline{y})$ or $\sum P(x - \overline{x})(y - \overline{y})$						
	N						
Or	Covariance = Correlation $A_{AB} \times \sigma_A \times \sigma_B$						
->	Refer Ques 2 and 3 from Simplified AFM Ques book for practice.						
1117	COVARIANCE OF AN ITEFT WITH ITSELF = VARIANCE						
	$COVARIANCE = \sum (x-x)(y-y)$						
	N						
	In case of some security:						
	Covariance = $\sum (x - \bar{x})(x - \bar{x}) = \sum (x - \bar{x})^2$ i.e. variance of the security						
	N N						
IV)	CORRELATION OF AN ITEM WITH ITSELF = +1						
	Correlation(a,a) = <u>Covariance(a,a)</u>						
	σα σα						
	Correlation (a,a) = <u>Variance(a)</u> = +1						
	Variance(a)						

Section 1 - 'I Love you Betting' (Net settlement)

Boy - Today's weather is so pleasant at 30°C. It will be even cooler tomorrow. Maybe at 25°C.

Girl - Oh! I Don't think so. As per me, tomorrow will be a warm day, with temperature above $30^{\circ}\text{C}.$

Boy — If you are so confident, then why don't we place a bet on it?

For every 1 degree increase in temperature (above 30°C), I will pay you \$1. But if temperature falls you shall pay me \$1 for every 1 degree fall in temperature below 30°C. Girl — Deal.

I)	FIND THE PROFIT / LOSS IF						
	Temperature next day	Воу	Girl				
	28°C	\$ 2	-\$ 2				
	34°C	-\$4	\$ 4				
	30°C	0	0				

II)	LAYMAN LANGUAGE	INVESTMENT PROFESSIONALS' LANGUAGE
i.	Boy & Girl ARE BETTING on next day's temperature.	Boy & Girl have ENTERED INTO A FUTURES CONTRACT
		(with underlying item being 'temperature')
ii.	Boy has a DOWNSIDE bet.	Boy is SHORT futures (i.e. F-)
iii.	Whereas, Girl is betting on UPSIDE.	Girl is LONG futures (i.e. F+)

III)	CAN YOU SENSE A BIG RISK IN THE ABOVE DEAL?
	Yes. The party who lost the bet may refuse to pay.
	This is known as COUNTERPARTY CREDIT RISK (CPCR).
Ex:	If temperature next day is 28°C, then Girl shall pay \$2 to Boy. But what if she refuses to pay?
	(Similarly, if temperature next day is 34°C, then Boy may refuse to pay \$4 to Girl.)
V)	SOLUTION TO COUNTERPARTY CREDIT RISK.
	Petholic multiplic to Dec. 0. Cit. Interation on a finance mineform that the standard Decision

8.2

Derivatives (Futures)

	Temp. Next day	Boy gain / (loss)	Boy Net Pay	Girl Gain / (loss)	Girl Net pa
	28°C	\$ 2	10 + 2 = 12	- \$ 2	10 - 2 = 8
	34°C	-\$4	10 - 4 = 6	\$4	10 + 4 = 14
	30°C	0	10 + 0 = 10	0	10 + 0 = 10
V)	SPEAKING TECH	NICALLY			
1.	The security depo	sit is known as 'INITIA	L MARGIN'. In our ex	ample initial margin = \$1	0.
2.	The trusted party	y with whom Margin Moi	ney is deposited can b	pe an exchange (in case c	of Exchange tra
	derivatives) or a (CCP i.e. Central Counterp	party (in case of OTC	derivatives).	
VI)	CRUX				
VI) -	CRUX We just saw an e	xample of betting on T	emperature. Similarly,	we can bet on virtually	any item.
VI) _	CRUX We just saw an e. It can be a cricke	xample of betting on To t match or on a STOCK	emperature. Similarly, or COMMODITY or ev	we can bet on virtually ven BONDS.	any item.

Section 2 - A Genuine case of a Wheat Farmer!

A wheat farmer will be harvesting 100 Kg wheat after 3 months. However, he is afraid that the price of Wheat may fall by that time.

Currently the prevailing price is ₹15 per Kg. Any FALL in wheat price will directly impact the income of this farmer.

A wheat mill purchases wheat from farmers to make bread & cakes.

The Miller is afraid that the wheat price may INCREASE in the coming months. This will directly affect the profitability of his mill.

)	SOLUTION = Futures contract
	In this case, the wheat farmer and the Mill owner can enter into a contract to trade 100 Kg wheat after
	3 months at a PRE-DETERMINED RATE. Let us say that the price is fixed today at ₹16/kg.
	THIS IS KNOWN AS A FUTURES CONTRACT.
	Wheat Farmer -> Will supply 100 Kg wheat, after 3 months at the pre-fixed rate of ₹16/kg.
	Mill owner -> Will purchase 100 Kg wheat, after 3 months at the pre-fixed rate of ₹16/kg.
I)	IMPORTANT POINTS!
	The contract is entered today only. The rate at which wheat will be delivered is also fixed today only.
	Even the quantity of wheat is also fixed today.
-	Only the delivery of the wheat by Farmer and the payment by Miller will be made at a future date.
)	WHO IS LONG, WHO IS SHORT?
-	Wheat farmer will Sell wheat in future -> He has sold futures contract. i.e. he has SHORT position.
-	The Miller will Buy wheat in future -> He has bought futures contract. i.e. he has LONG position.
1V)	VERY EASY WAY TO DETERMINE POSITION
	If you want to buy in future -> Buy futures contract i.e. Long futures (F+)
	If you want to sell in future -> Sell futures contract i.e. Short futures (F ⁻)
v)	BASIC TERMINOLOGY OF FUTURES CONTRACT
1.	The quantity decided of 100kg is known as 'Lot size of futures contract.'
2.	The period of 3 months is known as 'Expiry of futures contract'
3.	The price that is fixed today (of ₹16/kg) is known as the 'price of futures contract'
VI)	CRUX
	THE ABOVE ILLUSTRATION IS OF - PHYSICAL DELIVERY FUTURES CONTRACT.
-	Technically speaking, the above case is of 'Forward' (more detail later).

8.4

Section 3 - Airlines are worried!

Problem — Gogo Airlines is worried about an increase in oil prices (as it means higher operational costs). It will need 1 Lakh barrels of oil after 2 months.

At the same time, oil producers are concerned about a fall in oil price (as it means lower revenue).

The current oil price is \$75/barrel. 2-months oil futures are trading at \$74/barrel.

I)	SOLUTION			
	Enter into a 2-month ful	tures contract for 1 lakh ba	rrel at a rate of say	\$74 per barrel.
	Gogo airlines -> Wants	to buy oil in future -> Buy	futures (i.e. Long fu	itures)
	Oil company -> Wants	to sell oil in future -> Sell	futures (i.e. Short fu	tures)
II)	SETTLEMENT UNDER NE	ET SETTLEMENT		
	Under this only profit / l	oss is net settled.		
	Price on expiry i.e. after	2m Profit / loss to ,	Airline co. Pr	rofit / loss to oil co.
	80	6 x 1 lakh = \$6,00),000 -6	6 x 1 lakh = - \$ 6,00,000
	65	-9 × 1 lakh = -\$9,	00,000 9	x 1 lakh = \$9,00,000
III)	SETTLEMENT UNDER PH	IYSICAL DELIVERY		
	Under this Gogo Itd will p	ourchase Oil at \$74/barrel fr	om the oil co. irresp	pective of the prevailing price.
	Market Price on	Price at which Gogo ltd.	Profit / (loss)	Profit / (loss)
	expiry (after 2m)	will buy & oil co. will sell	to Gogo ltd.	to Oil co.
	80	\$74 / barrel	(80 - 74) × 1L = \$	6L (74 — 80) × 1L= - \$ 6L
	65	\$ 74 / barrel	(65 — 74) × 1L = -	\$9L (74 - 65) × 1L = \$9L
IV)	CRUX - BOTH ARE SAM	E		
	Clearly, it can be seen fro	om above that both the me	thods essentially lead	d to same financial outcome.
Note:	We have assumed that o	il price after 2 months turr	ns out to be: Case 1	- \$ 80 / barrel
			Case 2	\$65 / barrel
	You can take any other o	assumption Net conclusion	will remain some	φουν τουτοί

Derivatives (Futures)

Section 3 (1) - Smart Boy can Profit from Apples!

(Theory of No Arbitrage)

III)	I) WHAT IS ARBITRAGE?	
	The ₹20 earned in above ex is called arbitrage profit. Arbitrage profit generally has 3 ch	aracteristics -:
a)	a) No risk b) Sure shot profit	
c)	c) No initial outlay of funds i.e. में अपनी जेब से पैसा नहीं खर्चूंगा !	
IV)	/) PRINCIPAL OF NO ARBITRAGE (PNA) or LAW OF ONE PRICE	
	In real life, you will hardly observe any arbitrage opportunities. This is because the actic	ons of arbitragers
	themselves vanishes such opportunities and brings price to where it should be.	
	For ex: i) Apple price in Gurgaon & Delhi became equal	
	ii) Infosys price on BSE & NSE became equal	
	This is known as 'PRINCIPAL OF NO ARBITRAGE (PNA)' .	
	This is also known as 'Law of one price'. i.e. 2 securities or portfolios that have identic	al cash flows in
	the future, regardless of future events, should have the same price.	
V)	/) ARBITRAGE USING BOND STRIPS	
	We read in 'Bonds' that: Value of Interest strip + Value of Principal strip = Value of Bo	ond
Ex:	 x: If the current market yield is 9%. Then price of a 3-year, 9% bond = 1,0 	000
	Price of interest only strip (IO strip) = 227.82. Price of Principal only strip (PO strip)	= 772.18
	i.e. Bond price = 10 strip + PO strip → 1000 = 227.82 + 772.18	
Q:	Q: Construct arbitrage if bond is trading at 1005 and IO strip = 225 & PO strip = 770.	
	Arbitrage -> Sell the bond and Buy IO strip + PO strip	
	Arbitrage profit = 1005 - (225 + 770) = ₹10	
	Why is this arbitrage profit?	
a)	a) Sure shot profit of ₹10	
b)	b) Since it includes simultaneous buying and selling of the bond and its strips, there is no r	isk and also no
	funds are required to be invested.	
	BUT SOON IO & PO \rightarrow Huge buying pressure due to increase in demand \rightarrow Pri	ce will increase
	Bond $ ightarrow$ Huge selling pressure will lead to increased supply $ ightarrow$ Price	will fall.
	This will continue till → Price of Bond = Price of IO + PO strip	

Derivat	tives (Options)	9.2	L	WWW.KRIV	IEDUSPACE.COM
		Diwali TIME OPEN	vali	Lottery,	
		THIS DIWALI - LET'S	BUY A	FINANCIAL LOTTERY	
	A conversion betwe	een Lottery uncle Mr. Yadav ar	nd a pro	ofessional finance student.	
	Mr Yaday: Regular lo	to purchase a lottery. Otteries are now bugone. Whu	don't i	Jou tru new age 'Financial lot:	eries '
	We have 2 types of	`financial lotteries			
	Type 1 - चढ़ने पर म	गलामाल Lottery			
	Type 2 - गिरने पर म	मालामाल Lottery			
I)	1-MONTH चढ़ने प	र मालामाल LOTTERY			
1)	First you decide a s	tock & and strike price. Say yo	ou decia	led TVS stock and strike price c	of ₹500.
2)	You buy this lotter	y by paying the lottery ticket	price (a	ilso known as lottery premium). Ticket price for
	TVS stock at a strik	e price of ₹500 is ₹25.			
3)	keward on expiry -	Tou will gain if price on expire	Jexcee	as the strike price of 2500.	
		चढ़न पर म	แตเห		
		If Stock Price on expiry > Strike price		If Stock Price on expiry ≤ Strike price	
		Wohooo 😂 Lottery Nikal gai.		Lottery Fusssss 😭 But no tension	
		Gain = Stock price - Strike price		Kuch Dena nhi h So, Payoff = '0' 🙂	
		Ex: If Stock Price on expiry = ₹540, then Gain = 40 (i.e. 540 - 500)		Ex: If Stock Price on expiry = ₹470, then Payoff = 0	

II)	1-МОНТН गिरने प	पर मालामाल LOTTERY	
	Almost same as च	ढ़िने पर मालामाल Lottery but he	ere you'll gain if price on expiry falls below strike price.
		गरिने पर मार	लामाल LOTTERY
		If Stock Price on expiry ≥ Strike price	If Stock Price on expiry < Strike price
		Fussss 😪 But its ok. Because	You won😁 Lottery Nikal padi
		Kuch Dena nhi h So, Payoff = '0' 🙂	Payoff = Strike Price - Stock price
		Ex: If Stock Price on expiry = ₹540, then	Ex: If Stock Price on expiry = ₹470, then
		Payoff = 0	Payoff = 30 (500 - 470)
III)	NET PROFIT = Par	yoff - Option Premium Paid	
	Ex: You won ₹40 f	rom the lottery. But you earlier	paid ₹25 as lottery ticket price.
	Then your Net pro	fit = ₹15 only (40 - 25).	
	Technical Learnin	as from Above Story	
1	These financial lot	teries are called 'options'.	
	चढ्ने पर मालामाल	T Lottery is called call options.	
	गिरने पर मालामाल	T Lottery is called put option.	
2.	Ticket price is paid	at the time of purchasing the o	ption. This is known as option premium (OP).
	Once paid, this opt	ion premium is non-refundable.	
3.	'Strike price' is use	ed to calculate reward of winner.	. Strike price is denoted by denoted by k.
•	Call option buyer v	vill win if Stock price on expiry (St) is more than the strike price (k) i.e. betting on upside.
•	Put option buyer v	vill win if stock price on expiry (ST)) is less than the strike price (k) i.e. betting on downside.
Ч.	The period of opti	on is known as expiry period. This	is denoted by 't'.
5.	Winning lottery is	also called exercising the option.	

PARTA: Setting the base!

Let us discuss a very (very) basic Graph \rightarrow Line Graph!

A student named 'Happy' has following track record in terms of class discipline. Ex: 5 y-axis: Number of instances Late in class Number of 4 (in minutes) instances 3 2 1 2 4 3 1 6 4 0 0 1 2 3 4 5 9 6 8 2 x-axis: Late in minutes or, the above question may be framed in the terms of probability instead of absolute instance: Late in class Number of Probability 40% (in minutes) instances

y-axis: PROBABILITY 30% 2 1 10% 20% 4 3 30% 10% 6 4 40% 8 2 20% 0% 0 1 2 5 7 3 4 6 8 9 Total 10 100% y-avis: Late in minutes

TOtal.	10	100 %	A-dAIS. Late III IIIIIutes
 DID YOU C	DBSERVE?		
 The shape	of the graph	in both the cases r	emains absolutely same. The only difference is that in case of:
 1 st Graph -	-> Y-axis conto	ains figures in absol	ute terms.
2 nd Graph -	-> Y-axis conta	ains figures in term	s of probability.
		Ĩ	
 Importa	nt When	ı y-axis contain	ns figures in terms of probability ->
 Then su	ch line Gra	ph is known as	'Probability Distribution.'
 <u></u>			

2.	<mark>Practi</mark>	cal Case- H	lei	ght	Dat	a										
	Following	height data is coll	ecte	d usii	ng a si	ample	of 50	,000 p	people	e. Ave	rage	height	is 70	inche	s.	
	Height	Probability (%)	Pro	babili	ity Dis	tributi	ion (y	our c	hildhc	ood lir	ne gro	aph wi	th prc	ob. on	y-axi	is)
	60	2	ity				He	ight l	Data ·	50,00)0 pe	ople				
	62	4.5	babil	18												
	64	7.8	> Pro	14						•	•					
	66	11.5	axis -	12				•				•				
	68	14.5	y-à	10												
	70	16		8			•						•			
	72	14.5		6		•								•		
	74	11.5		2	•										•	
	76	7.8		0				.,								
	78	4.5		58	60	62	64	x-axi	° ⁸ s> ŀ	leight	: (in i	nches)	76	78	80	82
	80	2			1		i						Ż.			
					Ţ		Ţ			Ţ			Ţ		Į	
	CONCLUS	SION														
	Average h	eight = 70 inches.	A lo	t of	people	e have	heigh	it arc	und f	che av	verag	e heigł	nt.			
	Probability	1 decreases as we	mov	ve aw	ay fro	om the	e aver	age.								
	The furthe	er we move, the l	esser	r the	proba	bility	gets.									
	At the ex	tremes (such as 6	50 inc	ches (or 80	inches,	the	oroba	bility)	the	oroba	ability	reduce	es sigr	nificar	ntly.
	,															,
	Crux - 1	Probability is a	high	iest	at M	lean (and	it de	crea	ises	as v	ve mo	ove a	way	fron	n it.
II)	THE ORIG	IN OF NORMAL D	ISTRI	IBUT	ION											
-	This pheno	omenon is very co	ommo	only -	found	in nat	ure. I	or e>	kampl	e _ \	Jeigh [.]	t of p	opulat	ion, E	mploų	jee
	review in	an organisation, L	ifespo	an of	an oi	rganisr	n etc									
-	This was f	irst published by I	Mr. Jo	ohanr	n Gaus	s. He r	named	l this	type	of di	stribu	ution a	is Gau	ssian	distrik	pution.
-	This distrik	pution was so nor	mal	in so	many	fields	that	it ca	me to	o be k	now	n as N	ormal	Distri	ibutio	n.*
*	(Statemen	t not completely	corr	ect.	Many i	moder	n app	licatio	ons si	ugges	t dive	ersion	from	assun	nptior	n of ND)
		,														

Friends with ND

Getting Friends with NL	betting l	Friends	with	NC
-------------------------	-----------	---------	------	----

FINANCE ACNARUA JATIN NAADAL (CA. FRMI)	(CA. FRM)	Nagoal	Jatin	e Acharua	Finance
---	-----------	--------	-------	-----------	---------

i)	How many people have height less than 5.7" i.e. the mean h	neight? Or find probability of height < 5.7".				
A:	In case of ND, 50% of items are less than the mean value.					
	\therefore Number of people with height < 5.7" = 50,000 × 50% = =	25,000				
	Prob(Height < 5.7") = 25000/50000 = 50%					
ii)	What is the probability that a randomly selected person w	vill have height > 6.5%?				
iii	Probability = 5% (given in gues)					
/ \.						
iii)	What is the probability that a randomly selected person will have height < 6.5"?					
A:	Prob. (Height < 6.5") = 100% - 5% = 95%					
iv)	Probability that a randomly selected person will have heigh	nt > 4.9".				
A:	Only 5% people have height < 4.9".					
	Prob. (Height < 6.5") = 100% - 5% = 95%					
v)	If 30% of people have height between 5.7" — 6.2", then w	hat is the probability that a randomly selected				
/	person will have height less than 6.2"?	<u>↑</u>				
A:	We know that in case of ND, 50% of items lies below	A				
	mean. Hence, 50% people will have height < 5.7".	50% people have				
		Height < Mean and 6.2"				
	Also, we are given that 30% of people have height					
	between 5.7" & 6.2".					
	∴ Total people with height < 6.2" = 50% + 30% = 80%.					
		5.7" 6.2"				
vi)	If 37.5% people have height between 5.0" and 5.7", ↑					
	then what is the probability of:	37.5% people have				
	- Prob. (Height > 5.0") - Prob. (Height < 5.0")	height between 5.0"				
Ans:	Prob.(Height > 5.0") = 37.5% + 50%					
	= 87.5%	TA				
		→ 50% people have				
	Prob.(Height < 5.0") = 100% - 87.5% = 12.5%	ileigiit > Mean				
	or = 50% - 37.5% = 12.5%	Maan E 7"				
	Balanče 12.5% Mean=5./ people have height					
		less than 5.0"				

PART C: Introduction To Z-scores

1.	Introduction to Z-scores				
Ex:	: Let us say that mean weight of an adult is 70 Kg, with a SD of 10 Kg. Weight data follows ND.				
•	Mr. Fluffy weights 90 Kg. We can say that:				
	Mr. Fluffy has 20 Kg (90-70) more weight than an average person (70 Kg).				
	Or				
	Fluffy's weight is 2 SD higher from the mean weight. i.e. (90-70)/10 = +2				
	When distance is defined in terms of SD, then it is known as Z-score.				
	Z-SCORE = <u>X - MEAN</u>	(Don't cram the formula. Its v.ea			
	SD				
Ex:	If mean weight = 70 Kg & SD = 10 Kg, Find the z-s	core in the following cases:			
i)	Weight of Mr. Chubby = 85 Kg				
	Z-score = <u>X - Mean</u> = <u>85 - 70</u> = 1.5				
	SD 10				
ii)	Weight of Mrs. Zero figure = 45 Kg				
	Z-score = <u>X - Mean</u> = <u>45 - 70</u> = -2.5				
	SD 10				
iii)	Weight of Mr. Adequate = 70 Kg				
	Z-score = <u>X - Mean</u> = <u>70 - 70</u> = 0				
	SD 10				
		\square			
2.	NEGATIVE & POSITIVE Z-SCORES				
	Positive Z-score = Item is above mean.				
	Negative Z-score = Item is below mean.				
	Zero Z-score = Item = mean.				
		Nagativa 7 Saaraa 0 Daaitiva 7 Saaraa			

Getting Friends with ND

•••	Why do we even need Z-scores? Because the rules of normal distribution are very precise. If something truly follows a Normal distribution						
	then the distance between mean & SD conveys the probability of an item.						
Illus: -	If mean weight = 75 Kg & SD = 20, then:						
	If we move 1.645 SD away from mean, we will cover 95% of the population.						
	i.e. 1.645 × 20 = 32.9 Kg away from mean.						
	i.e. 75 + 32.9 = 107.9 Kg						
	\therefore we can confidently say 95% of population have weight \leq 107.9 Kg.						
	If we move 1.96 SD higher from mean, then we will cover 97.5% of all the population.						
	i.e. 75 + 1.96 × 20	= 114.2 Kg					
	∴ we can confi	dently say 97.5% of	population hav	e weight \leq 114.2 Kg.			
	Or, FORMULA WISE						
	To cover a certain probability, we need the z-score corresponding to it.						
	Then formula = Mean + Z.SD						
		· ··· ·					
4.	Important	Z-scores					
4.	Important Or	<mark>Z-scores</mark> NE TAIL PROBABILI	ΤΥ	TV	JO TAIL PROBABILI	ТУ	
4.	Important Or Confidence level	<mark>Z-scores</mark> NE TAIL PROBABILI ⁻ Significance level	TY Prob - 1 tail	TV Confidence level	VO TAIL PROBABILI Significance level	TY Prob - 2 tai	
4.	Important Or Confidence level 90%	Z-scores NE TAIL PROBABILI ⁻ Significance level 10%	ГУ Ргоb - 1 tail 1.28	TV Confidence level 90%	VO TAIL PROBABILI Significance level 10%	TY Prob - 2 ta 1.645	
4.	Important Or Confidence level 90% 95%	Z-scores NE TAIL PROBABILI Significance level 10% 5%	ГУ Ргоb - 1 tail 1.28 1.645	TV Confidence level 90% 95%	VO TAIL PROBABILI Significance level 10% 5%	TY Prob - 2 tai 1.645 1.96	
4.	Important Or Confidence level 90% 95% 97.5%	Z-scores NE TAIL PROBABILI Significance level 10% 5% 2.5%	TY Prob - 1 tail 1.28 1.645 1.96	TV Confidence level 90% 95% 97.5%	VO TAIL PROBABILI Significance level 10% 5% 2.5%	TY Prob - 2 tai 1.645 1.96 2.24	
4.	Important Or Confidence level 90% 95% 97.5% 99%	Z-scores VE TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 1 tail 1.28 1.645 1.96 2.33	TV Confidence level 90% 95% 97.5% 99%	VO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 tai 1.645 1.96 2.24 2.58	
4.	Important Or Confidence level 90% 95% 97.5% 99%	Z-SCORES NE TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 1 tail 1.28 1.645 1.96 2.33	TV Confidence level 90% 95% 97.5% 99%	VO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 ta 1.645 1.96 2.24 2.58	
4.	Important Or Confidence level 90% 95% 97.5% 99% SIGNIFICANC	Z-SCORES NE TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 1 tail 1.28 1.645 1.96 2.33 5 - Confidence	TV Confidence level 90% 95% 97.5% 99%	VO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 tai 1.645 1.96 2.24 2.58	
4.	Important Or Confidence level 90% 95% 97.5% 99% SIGNIFICANC	Z-scores VE TAIL PROBABILI Significance level 10% 5% 2.5% 1% E LEVEL = 100%	TY Prob - 1 tail 1.28 1.645 1.96 2.33 - Confidence	TV Confidence level 90% 95% 97.5% 99%	VO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 tai 1.645 1.96 2.24 2.58	
4.	Important Or Confidence level 90% 95% 97.5% 99% SIGNIFICANC	Z-SCORES NE TAIL PROBABILI Significance level 10% 5% 2.5% 1% ELEVEL = 100%	TY Prob - 1 tail 1.28 1.645 1.96 2.33 5 - Confidence il probabilities)	TV Confidence level 90% 95% 97.5% 99%	VO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 tai 1.645 1.96 2.24 2.58	
4.	Important Or Confidence level 90% 95% 97.5% 97.5% 99% SIGNIFICANC	Z-SCORES VE TAIL PROBABILI Significance level 10% 5% 2.5% 1% ELEVEL = 100% cleast learn one ta	TY Prob - 1 tail 1.28 1.645 1.96 2.33 5 - Confidence il probabilities)	TV Confidence level 90% 95% 97.5% 99%	JO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 tai 1.645 1.96 2.24 2.58	
4.	Important Or Confidence level 90% 95% 97.5% 97.5% 99% SIGNIFICANC	Z-scores VE TAIL PROBABILI Significance level 10% 5% 2.5% 1% ELEVEL = 100% cleast learn one ta	TY Prob - 1 tail 1.28 1.645 1.96 2.33 5 - Confidence il probabilities)	TV Confidence level 90% 95% 97.5% 99% e Level	VO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 tai 1.645 1.96 2.24 2.58	
4.	Important Or Confidence level 90% 95% 97.5% 99% SIGNIFICANC	Z-SCORES NE TAIL PROBABILI Significance level 10% 5% 2.5% 1% ELEVEL = 100%	TY Prob - 1 tail 1.28 1.645 1.96 2.33 5 - Confidence il probabilities)	TV Confidence level 90% 95% 97.5% 99%	VO TAIL PROBABILI Significance level 10% 5% 2.5% 1%	TY Prob - 2 tai 1.645 1.96 2.24 2.58	

Getting	Friends with ND	10.9	WWW.KRIVIEL	DUSPACE.COM		
5.	Applications using Z-scores					
	The following scenarios assumes Noi	mal distribution.				
Case 1:	Strong ltd, a construction co. wants to design the door height for the flats. According to a survey,					
	the average height is 160 cm and SD = 15 cm. Find the appropriate door height such that at least 95% of					
	people can easily pass through.		↑			
Ans:	I know, if I move 1.645 SD away fro	m mean,	\square			
	then I will cover 95% of population					
	Therefore, relevant Z-score for 95%	prob. = 1.645.				
	Required door height = Mean + Z.SD					
	= 160 + 1.645 ×	15		 ,		
	= 184.675 cm		160 18	84.675		
			1.645 SI)'		
Case 2:	Mr. Smart started a new printing bu	siness. The average in	iitial required capital would be ₹10	lakh. However,		
	this amount can vary and have a st	andard deviation of a	₹60,000. Mr. Smart wants to be 99	% sure that		
	there is no shortage of funds. How	much money should	he keep aside?			
Ans:	Z-score for 99% probability = 2.33					
			, A			
	\therefore Required funds = Mean + z.SD					
	= 10,00,000 + 2.33	× 60,000	A			
	= ₹11,39,800					
	i.e. we are 99% confident that the	und requirement				
	of the company will not exceed ₹11	,39,800.				
	Hence, -> Max required funds at 99%	, confidence		\rightarrow		
	level is ₹11,39,800.		10L 11	1.398L		
			2.33 SD			

Case 3:	Mr. Daring started a new start-up co. The expected next year profits of the company is ₹5 Lakh with a				
	standard deviation of ₹3,50,000. Mr. Daring wants to know the maximum loss that the company may incur				
	at 99% confidence level.				
Ans:	Z-score for 99% probability = 2.33				
	∴ Max. loss = Mean - z.SD				
	= 5L - 2.33×3.5L				
	= -3.155 Lakh				
	Hence, we can be 99% confident that the				
	max. loss that will be incurred by the co. in -3.155L 5L				
	one-year time frame will be ₹3.155 lakhs.				
	This Maximum Loss is known as Value at Risk (VaR)				
Case 4:	A stock has a mean of 10% and a standard deviation of 12%. Find the max. loss that may be incurred on				
	this stock at 95% confidence level. Or in other words, find the Value at Risk (VaR) at 95% confidence level.				
Ans:	Z-score for 95% probability = 1.645				
	\square				
	∴ 95% VaR = Mean - z.SD				
	(or Max. loss at = 10% - 1.645×12%				
	95% confidence) = -9.74%				
	Hence, we can be 95% confident that the max.				
	loss that may be incurred is 9.74%.				
	-7.14% IU%				
	1.645 SD				

Jatin Nagpal (CA, FRM)

- Bagged **1st position** at the district level in all the levels of CA exams

- Scored 1st Quartile in 8 subjects of FRM.
- Ex-PwC Article
- Holds NISM-Research Analyst Certification
- *fx-Jrader* stocks and F&O segment

I Have One Goal --> "To Simplify your Finance Journey."

All our Classes, books & revision videos have 1 single aim - To provide you with the finest knowledge in the simplest manner possible.

0% Sacrifice on Quality or Technicality, yet 100% focus on Simplicity.

This isn't easy at all. But with strong conviction even mountains can move. :)

Scan the QR code to Connect to our Admin desk & Get all your queries answered! Connect with Us: www.krivii.in S S 9478423144 Krivii Eduspace

< Krivii Eduspace Telegram Channel